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Details of the new six - to four- port reduction strategy are m

ABSTRACT

The Six- to Four- Port Reduction technique has been enhanced

in a number of ways. A more stable iteration strategy is

presented, which shows improved performance in the presence

of noise, and with non - ideal microwave hardware. The

quality of the five Six- to Four- Port Reduction coefficients is

also quantified by a new Variance technique, which allows

their effect on reflection coefficient measurement accuracy to

be predicted.

INTRODUCTION

The Six- to Four- Port Reduction technique proposed by

Engent21 has been widely accepted as an attractive method for

the calibration of six - port reflectometers, since it only

requires three precision reflection standards. However, the

iterative solution of the non-linear equations used in the

technique can diverge if the power measurements have greater

than 1YO noise, and less for a poorly behaved microwave

circuit.

This paper documents the performance of the Six- to Four-

Port Reduction through software simulation, showing the

effect that noise during calibration has on measurement

accuracy. A new figure of merit is proposed, which indicates

the quality of the five Six- to Four- Port Reduction

coefficients, based on the variance of circle intersection errors

in the measurements used for the calibration. The variance

helps to give an indication of the measurement quality that can

be expected after the crdibration.

In addition, the variance has also been applied to a new Six- to

Four- Port Reduction algorithm, which exhibits an improved

stability of convergence in the presence of noise or non-ideal

microwave circuitry. This technique is combined with the

original Six- to Four- Port Reduction algorithm in two forms,

to create a robust strategy with the following properties:

. Higher convergence likelihood in the presence of noise.

. Automatic choice of the best initial estimate for iteration,

● No speed degradation under normal conditions.

. Coefficient quality is quantified after iteration, includlng

iteration divergence.

presented, together with practical results from a 250MHz to
26.5GHz co-axial six - port reflectometer.

1. THE CONVENTIONAL SIX- TO FOUR- PORT

REDUCTION ALGORITHM

The six- to four-port reduction method was first developed by

Engen[l~21 and subsequently by Griffin et al[31. It consists of

partitioning the six-port into a “perfect” four-port reflectometer

and a two-port network whose S-parameters characterise the

errors in measurement between the four-port and the device

under test (DUT). This is shown in figure 1.1.
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Figure 1.1 . Partitioning the Six - Port Rej7ectometer

The act of partitioning the six- port in this way also partitions

the eleven coefficients used to characterise it. Three complex

numbers describe the two- port network. The notional perfect

reflectometer is defined by finding the five remaining six- port

coefficients. The four power readings are combined with the

five “reduction” coefficients (p, q, r, A2, B2) to calculate the

complex ratio W that the perfect reflectometer would have

measured:

W=u+jv (1.1)
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2. A NEW REDUCTION EQUATION

where

(1.2)

r(P+~-r)+(p-q+r)Q, -(p-q –r)A2Qz -2rB2Q3
v=

tiJr(2pq + 2qr + 2rp - p2 - q2–i-2)

(1.3)
and

Q,.;, Q+ Q,.:
3 3 3

(1.4)

Engen[21 has shown that these five coefficients may be

computed after observing the responses to a set of arbitrary and

unknown reflection coefficients. This is possible because a

constraint equation may be formed between Ql, Q2 and Q3

which does not involve the reflection coefficient of the DUT.

pQf + qA2Q~ + rB2Q~ +

(r-p- q)A2Q,Q, +(q-p-r)B2Q1Q, +(p-q-r)A2B2Q,Q3 +

p(p–q –r)QI +dq - p-r)A2Q2 +~(~– p–q)B2Q~ +Pw = o
(1.5)

Equation (1,5) is used as the basis for the six- to four- port

reduction. In practice, nine or more arbitrary loads are used, in

order to obtain a closed - form initial estimate of the reduction

coefficients. These values are then improved by iterating (1.5)

with a least- squares technique[ql.

Divergence of the reduction iteration using (1.5) is where p,q

and r s O, since that causes the equation to evaluate to zero

regardless of the values of AZ and Bz, or the Q: Hence it is a

false root of (1.5). The iteration strives to minimise a sum of

squared residuals defined by:-

[

~ pQ~ + qA2Q~ + rB2Q~ +

S = ~ (r–p–q)A2Q,Q2 +(q–p–r)B2Q1Q3 +(p–q–r)A2B2Q2Q3 +
j=l

P(P–q–rJQl +q(q– P–rM2Q~ +r@P–q)B2Q3 +twr I
(1.6)

where n is the number of arbitrmy terminations. Note that

every term is multiplied by some function of p, q, and r. A

modified minimisation function which does not exhibit the

same false roots as (1.6) is

[

pQ~ + qAzQ~ + rB2Q~ +

1
2

(r–p–q)A2Q1Q2 +(q–p–r)B2Q,Q3 +(p–q–r)A2~2QZQ3 +

n p(p–q –r)Q1 +g(q– P–r)A2Ql +r(r– P–q)B2Q3+pw
s.~

,=1 (p9r)2

(1.7)

When p,q and r = O, equation (1.7) becomes large, and hence

is more stable than (1.6). There are other false roots near to the

correct solution, so this must be used with caution.

From a geometrical viewpoint, it can be seen from figure 2.1

that when the correct set of reduction coefficients have been

found, the three circles will always intersect in a single point,

whatever the value of the termination.

Figure 2.1: SIX - Port Circle Intersection in W - Plane

The converse can be used for a new iterative method. Using an

expression for the degree of non- intersection of the three

circles for each arbitrary termination, a minimisation iteration

can be used to find the reduction coefficients, Numerical

simulation shows that this technique has a wider capture range

for convergence than equation (1.5), which is attributed to the

lower powers of the variables involved.
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Figure 2.2: Six-to Four- Port Reduction using

Distance to Radical Centre

The minimisation function is obtained by calculating the

difference between the radical centre and the nearest point on

each of the circles. The radical centre is a defined point for any

set of three circles, and only touches all three circles when they

all intersect in one point. The lengths marked Ll, L2, and L3 in

figure 2.2 are used to construct the new variance equation:

V=~L;1+L;2+L;3 (2.1)
,=1
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where i is one of n arbitrmy terminations. The co-ordinates of

the radical centre can be found by evaluating (1.2) and (1.3)

using the current estimates for the five reduction coefficients.

The positive root for (1.3) is assumed at this stage, even if the

correct root is known to be negative. The sign choice may be

deferred until the coefficients have been found. Let the co-

ordinates of the radical centre be denoted by Urc and Vrc. Now

Ll, L2, and L3 can be found by invoking Pythagoras:-

4 ‘dR-& (2.2)

L2 ‘~~-A@ (2.3)

& = J(xn -u,.)’ +(Y. - v,.)’ -B@ (2.4)

where
r+q–p

% = 2& (2.5)

yn =Jq–x; (2.6)

3. A NEW SIX-TO FOUR- PORT REDUCTION

STRATEGY

An overall reduction strategy that makes the best possible use
of the new technicmes is now described. A flow chart outlining
the strategy is shown in figure 3.1.
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The best initial estimate is selected from closed - form

calculations, theoretical values, and adj scent frequencies. The

variance of these estimates is used to make the choice.

4. ACCURACY OF SOLUTION

A computer simulation was used to evaluate the effect of noise

on the six - to four - pofi reduction process. Fkst, a simulated

six- port was fully calibrated in the absence of noise. Next, the

arbitrary termination data was re- taken with a controlled

amount of random noise added. The reduction was then

repeated for each of the methods using the same arbitrary

termination data. Each reduction was tested by making a noise-

free simulated measurement of a matched load (reflection

coefficient = O) using the noise- free four- port calibration.

Ideally, an infinite return loss would be measured, so any

inaccuracy in the reduction coefficients causes a finite residual

measurement error.

Figure 4.1 shows how noise error in the arbitrary termination

data propagates through the reduction coefficients to a residual

error in reflection coefficient measurements. Reductions using

(1.5) and (2. 1) are both evaluated on an ideal and a poor six -

port circuit, having circle centres at l-ZOO, 11120°, 11-120°,

and O.l.ZOO, 3L108”, 1.Z-161° respectively:-
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Figure 4.1: Error residual in reflection coefficient measurement, as a

function ofpower measurement error in the arbitrary termination data

used for the Six- to Four Port Reduction

There is a slight improvement in quality of reduction

coefficients when equation (2. 1) is used. Equation (1.5)

diverged from the true solution at the highest noise levels, and

needed an artificially exact initial estimate to converge.

Equation (2. 1) did not fail in these tests.

Figure 4.2 shows the results of equation (2.1) after iteration is

complete. This can be used to estimate the residual error in the

reduction coefficients.

Figure 3.1: A new Six-to Four- Port Reduction strategy
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Figure 4.2: Tbe use of Variance (equation 2.1) to estimate reflection

coefficient measurement accuracy, considering only reduction coejj$cient

errors

5. PRACTICAL RESULTS

The new six- to four- port reduction technique has been

successfully implemented in a practical system[41. The circuit

is well- conditioned and the accuracy of the power ratios is

<0.1 $ZO. Most of the frequency points in the operating band of

250MHz - 26.5GHz converge using the constraint equation

(1.5) in 3 to 5 iterations. At some frequency points, the

variance iteration (2. 1) is invoked, and the results checked by

the consh-aint iteration (1.5). This occurs particularly at

frequencies below 750MHz, which is outside the pass-band of

the 3dB quadrature couplers employed. At all frequencies, a

successful convergence is obtained. The final variance with the

practical six- port system, shown in figure 5.1, is in the range

10-6 to 10-4 over the entire operating band.
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Figure 5.1:10 Log (Variance) (equation 2.1) for a practical Six - Porl
Reject ometer

Errors in the reduction coefficients contribute to the overall

uncertainty in reflection coefficient measurement. The degree

of contribution depends on the reflection coefficient of the

device under test (DUT), and also on the four - port calibration

method used, because errors only become apparent when the

measurement is extrapolated away from the calibrated

positions on the reflection coefficient plane. If a fixed or

sliding load standard is used, the accuracy of the reduction

coefficients has only a secondary effect on the effective

directivity of the reflectometer. Conversely, the effective

source match is directly influenced, and thk is revealed

particularly when measuring highly reflective devices whose

phase lies between that of the calibration short circuit and open

circuit. For the reflectometer described above, the effective

source match and directivity are limited by the quality of the

calibration pieces[41:

Source Match (dB)

3.5mm 33 44

7mm 42 53

Table 5.1: Effective source match and directivityfor a practical Six - Port
Rejlectometer

CONCLUSIONS

A variance technique has been proposed that has two important

applications. It can be used to quantify the accuracy of six- to

four- port reduction coefficients, independently of the

algorithm used to obtain them. In addhion, it can form the

basis of an enhanced reduction algorithm which is less

susceptible to iteration divergence. This is important when

noise on the power measurements or non-ideal circle centres

cause the standard reduction iteration to diverge.

Full details of the new six- to four - port reduction strategy

have been presented, together with practical results from a

250MHz to 26.5GHz co-axial six - port reflectometer.
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