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ABSTRACT

The Six- to Four- Port Reduction technique has been enhanced
in a number of ways. A more stable iteration strategy is
presented, which shows improved performance in the presence
of noise, and with non - ideal microwave hardware. The
quality of the five Six- to Four- Port Reduction coefficients is
also quantified by a new Variance technique, which allows
their effect on reflection coefficient measurement accuracy to
be predicted.

INTRODUCTION

The Six- to Four- Port Reduction technique proposed by
Engenl2] has been widely accepted as an attractive method for
the calibration of six - port reflectometers, since it only
requires three precision reflection standards. However, the
iterative solution of the non-linear equations used in the
technique can diverge if the power measurements have greater
than 1% noise, and less for a poorly behaved microwave
circuit.

This paper documents the performance of the Six- to Four-
Port Reduction through software simulation, showing the
effect that noise during calibration has on measurement
accuracy. A new figure of merit is proposed, which indicates
the quality of the five Six- to Four- Port Reduction
coefficients, based on the variance of circle intersection errors
in the measurements used for the calibration. The variance
helps to give an indication of the measurement quality that can
be expected after the calibration.

In addition, the variance has also been applied to a new Six- to
Four- Port Reduction algorithm, which exhibits an improved
stability of convergence in the presence of noise or non-ideal
microwave circuitry. This technique is combined with the
original Six- to Four- Port Reduction algorithm in two forms,
to create a robust strategy with the following properties:

» Higher convergence likelihood in the presence of noise.

» Automatic choice of the best initial estimate for iteration.

o No speed degradation under normal conditions.

« Coefficient quality is quantified after iteration, including
iteration divergence.
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Details of the new six - to four- port reduction strategy are
presented, together with practical results from a 250MHz to
26.5GHz co-axial six - port reflectometer.

1. THE CONVENTIONAL SIX- TO FOUR- PORT
REDUCTION ALGORITHM

The six- to four-port reduction method was first developed by
Engen(1-2] and subsequently by Griffin et all3). It consists of
partitioning the six-port into a “perfect” four-port reflectometer
and a two-port network whose S-parameters characterise the
errors in measurement between the four-port and the device
under test (DUT). This is shown in figure 1.1.
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Figure 1.1 - Partitioning the Six - Port Reflectometer

The act of partitioning the six- port in this way also partitions
the eleven coefficients used to characterise it. Three complex
numbers describe the two- port network. The notional perfect
reflectometer is defined by finding the five remaining six- port
coefficients. The four power readings are combined with the
five "reduction” coefficients (p, q, r, A2, B2) to calculate the
complex ratio W that the perfect reflectometer would have
measured:

W=u+jv (1.1)
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where
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Engenl2] has shown that these five coefficients may be
computed after observing the responses to a set of arbitrary and
unknown reflection coefficients. This is possible because a
constraint equation may be formed between Q;, O, and U3
which does not involve the reflection coefficient of the DUT.

PO} +qA*QF +rB*Q7 +
(r-p-q)A’Q,0, +(g-p-1r)B*QQs +(p—q-r)A*B*0,0; +

p(p—q—r)0 +q(q—p—r)A’Q, +r(r— p—q)B* 0y + pgr =0
(1.5)

Equation (1.5) is used as the basis for the six- to four- port
reduction. In practice, nine or more arbitrary loads are used, in
order to obtain a closed - form initial estimate of the reduction
coefficients. These values are then improved by iterating (1.5)
with a least- squares techniquel3].

Divergence of the reduction iteration using (1.5) is where p,q
and r = 0, since that canses the equation to evaluate to zero
regardless of the values of A2 and B2, or the Q;. Hence it is a
false root of (1.5). The iteration strives to minimise a sum of
squared residuals defined by:-

POP +qA’Q; +rB’0} +
§=2| r=p-9A’QQ, +(q- p—1)B*QQ; +(p-q~NA’B'Q,0; +
= P(P—q-10, +q(q—p—1)A’Q, +r(r— p— Q) B Q; + pgr
(1.6)

where n is the number of arbitrary terminations. Note that
every term is multiplied by some function of p, ¢, and r. A
modified minimisation function which does not exhibit the
same false roots as (1.6) is

pO? +qA*Q} +rBQ} + ’
(r—p—q)A’Q0, +(g—p—7)B*Q0; +(p—q—-r)A*B*Q,0; +
s\ p(p—q—r)Q +q(g— p—1)A*Q, +r(r— p—q)B*Qs + pgr

5=3.

2
=1 (Pq")

1.7
When p,q and r = 0, equation (1.7) becomes large, and hence
is more stable than (1.6). There are other false roots near to the
correct solution, so this must be used with caution.
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2. A NEW REDUCTION EQUATION

From a geometrical viewpoint, it can be seen from figure 2.1
that when the correct set of reduction coefficients have been
found, the three circles will always intersect in a single point,
whatever the value of the termination.
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Figure 2.1 : Six - Port Circle Intersection in W - Plane

The converse can be used for a new iterative method. Using an
expression for the degree of non- intersection of the three
circles for each arbitrary termination, a minimisation iteration
can be used to find the reduction coefficients. Numerical
simulation shows that this technique has a wider capture range
for convergence than equation (1.5), which is attributed to the
lower powers of the variables involved.
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Figure 2.2 : Six- to Four- Port Reduction using
Distance to Radical Centre

The minimisation function is obtained by calculating the
difference between the radical centre and the nearest point on
each of the circles. The radical centre is a defined point for any
set of three circles, and only touches all three circles when they
all intersect in one point. The lengths marked L;, L,, and L; in
figure 2.2 are used to construct the new variance equation:

V=Y, +1 @.1)

=1



where i is one of » arbitrary terminations. The co-ordinates of
the radical centre can be found by evaluating (1.2) and (1.3)
using the current estimates for the five reduction coefficients.
The positive root for (1.3) is assumed at this stage, even if the
correct root is known to be negative. The sign choice may be
deferred until the coefficients have been found. Let the co-
ordinates of the radical centre be denoted by u,, and v,.. Now
L,, L,, and L; can be found by invoking Pythagoras:-

L =fu +v2 -0 22)
Ly =(r —u,. ) +V2 - A0, 2.3)

Ly = J(x, =14, )* + (3, = Ve )* ~ B0 2.4)
where
X, = LTZ_%_P_ 2.5)

N P 2.6)
3. A NEw S1x- TO FOUR- PORT REDUCTION
STRATEGY

An overall reduction strategy that makes the best possible use
of the new techniques is now described. A flow chart outlining

the strategy is shown in figure 3.1.
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Figure 3.1 : A new Six- to Four- Port Reduction strategy

The best initial estimate is selected from closed - form
calculations, theoretical values, and adjacent frequencies. The
variance of these estimates is used to make the choice.

4. ACCURACY OF SOLUTION

A computer simulation was used to evaluate the effect of noise
on the six - to four - port reduction process. First, a simulated
six- port was fully calibrated in the absence of noise. Next, the
arbitrary termination data was re- taken with a controlled
amount of random noise added. The reduction was then
repeated for each of the methods using the same arbitrary
termination data. Each reduction was tested by making a noise-
free simulated measurement of a matched load (reflection
coefficient = 0) using the noise- free four- port calibration.
Ideally, an infinite return loss would be measured, so any
inaccuracy in the reduction coefficients causes a finite residual
measurement error.

Figure 4.1 shows how noise error in the arbitrary termination
data propagates through the reduction coefficients to a residual
error in reflection coefficient measurements. Reductions using
(1.5) and (2.1) are both evaluated on an ideal and a poor six -
port circuit, having circle centres at 1£0°, 1.£120°, 1£-120°,
and 0.1.£0°, 3£108°, 1£-161° respectively :-
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Figure 4.1 : Error residual in reflection coefficient measurement, as a
function of power measurement error in the arbitrary termination data
used for the Six- to Four Port Reduction

There is a slight improvement in quality of reduction
coefficients when equation (2.1) is used. Equation (1.5)
diverged from the true solution at the highest noise levels, and
needed an artificially exact initial estimate to converge.
Equation (2.1) did not fail in these tests.

Figure 4.2 shows the results of equation (2.1) after iteration is
complete. This can be used to estimate the residual error in the
reduction coefficients.
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Figure 4.2 : The use of Variance (equation 2.1) to estimate reflection
coefficient measurement accuracy, considering only reduction coefficient
errors

5. PRACTICAL RESULTS

The new six- to four- port reduction technique has been
successfully implemented in a practical systeml4l. The circuit
is well- conditioned and the accuracy of the power ratios is
< 0.1%. Most of the frequency points in the operating band of
250MHz - 26.5GHz converge using the constraint equation
(1.5) in 3 to 5 iterations. At some frequency points, the
variance iteration (2.1) is invoked, and the results checked by
the constraint iteration (1.5). This occurs particularly at
frequencies below 750MHz, which is outside the pass-band of
the 3dB quadrature couplers employed. At all frequencies, a
successful convergence is obtained. The final variance with the
practical six- port system, shown in figure 5.1, is in the range
10-6to 10 over the entire operating band.
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Figure 5.1 : 10 Log (Variance) (equation 2.1) for a practical Six - Port
Reflectometer

Errors in the reduction coefficients contribute to the overall
uncertainty in reflection coefficient measurement. The degree
of contribution depends on the reflection coefficient of the
device under test (DUT), and also on the four - port calibration
method used, because errors only become apparent when the
measurement is extrapolated away from the calibrated
positions on the reflection coefficient plane. If a fixed or
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sliding load standard is used, the accuracy of the reduction
coefficients has only a secondary effect on the effective
directivity of the reflectometer. Conversely, the effective
source match is directly influenced, and this is revealed
particularly when measuring highly reflective devices whose
phase lies between that of the calibration short circuit and open
circuit, For the reflectometer described above, the effective
source match and directivity are limited by the quality of the
calibration pieces!4l:

Connector Type | Source Match (dB) | Directivity (dB)
3.5mm 33 44
7mm 42 53
Table 5.1 : Effective source match and directivity for a practical Six - Port
Reflectometer
CONCLUSIONS

A variance technique has been proposed that has two important
applications. It can be used to quantify the accuracy of six- to
four- port reduction coefficients, independently of the
algorithm used to obtain them. In addition, it can form the
basis of an enhanced reduction algorithm which is less
susceptible to iteration divergence. This is important when
noise on the power measurements or non-ideal circle centres
cause the standard reduction iteration to diverge.

Full details of the new six- to four - port reduction strategy
have been presented, together with practical results from a
250MHz to 26.5GHz co-axial six - port reflectometer.
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